PHYSICS	Students will know and remember	So that they can
Force &		
Pressure		
SEPARATE	p = F A	Use the equation $p = F A$
PHYSICS ONLY	Where p is pressure on a surface, F is force normal to	Make measurements of weight and
Calculate the	the surface (N) and A is the area it acts on (m ²).	foot area to calculate your own
on a surface	The unit for pressure is Pa, Pascals	
SEPARATE	A fluid can be either a liquid or a gas. The pressure in	Use the equation $p = h \rho g$
PHYSICS ONLY	fluids causes a force normal (at right angles) to any	Observe rates of flow of water from
Calculate the	surjuce.	columns of different heights.
pressure in a	The pressure due to a column of liquid can be	Use the equation to explain why
liquid at rest	calculated using the equation: $p = n p g$	pressure (in a liquid) increases with the
HT only	p is pressure, h is height of the column(m), ρ is density	height of the column of liquid above
	oj trie liquia (kg/m²), g is gravitational fiela strength (N/ka).	liauid.
SEPARATE	The atmosphere is a thin layer of air round the Earth.	Make observations of water boiling at 60° C in a vacuum iar as pressure is
	altitude.	lowered.
Explain why	Air molecules colliding with a surface create	lise these observations and ideas of
pressure	atmospheric pressure. The number of air molecules	particles to explain why atmospheric
changes with	(and so the weight of air) above a surface decreases	pressure decreases with altitude (&
altitude (height)	as the height of the surface above ground level	why you can't get a good cup of tea up
	increases. So atmospheric pressure decreases.	Everest).
	A partially (or totally) submerged object experiences a	Calculate pressure at different
PHYSICS UNLY	greater pressure on the bottom surface than on the ton surface. This creates a resultant force unwards	aeptns/neignts in a water column.
Explain how	This force is called the upthrust.	Use your values of pressure to explain
uptnrust occurs and why things		wny there is a resultant upwards force.
float		Describe the factors which influence
HT only		jioating ana sinking.

PHYSICS	Students will know and remember	So that they can
Wave Properties		
Describe the difference between longitudinal and transverse waves	Waves may be either transverse or longitudinal. Transverse waves oscillate perpendicular to the direction of energy transfer.	Complete a diagram to show the movement of points within a transverse wave (water or slinky).
	Longitudinal waves oscillate parallel to the direction of energy transfer and so show areas of compression and rarefaction.	Complete a diagram to show the movement of points within a longitudinal waves (sound from a loudspeaker or slinky).
	Know examples of transverse and longitudinal waves.	
Describe wave motion in terms of their	The amplitude of a wave is the maximum displacement of a point on a wave away from its undisturbed position.	Use the equation T = 1/f. Identify amplitude and wavelength from given diagrams
amplitude, wavelength, frequency and period	The wavelength of a wave is the distance from a point on one wave to the equivalent point on the adjacent wave.	
	The frequency of a wave is the number of waves passing a point each second.	
	period = 1 / frequency	
Use the wave equation.	The wave speed is the speed at which the energy is transferred (or the wave moves) through the medium.	Use the equation $v = f \lambda$
	wave speed = frequency × wavelength	
	$v = f \lambda$	
Use the wave equation	Describe a method to measure the speed of sound waves in air.	Make rough measurements to calculate the speed of sound.
More on Waves	Describe a method to measure the speed of	Req prac 20:
	ripples on a water surface.	Make observations and measurements to measure f, v and λ of waves in a ripple tank and waves in a solid.
Apply the wave equation.	Show how changes in velocity, frequency and wavelength are inter-related.	Use waves on a stretched string to make observations to support the relationship between v, f and λ of the wave.
SEPARATE PHYSICS ONLY	Describe the effects of waves when they are reflected, absorbed or transmitted at the	Investigate the reflection of light by different types of surface.
Understanding reflection	boundary between two different materials.	Construct ray diagrams to illustrate the reflection of a wave at a surface.

SEPARATE PHYSICS ONLY Understanding refraction	Refraction is due to the difference in velocity of waves in different substances. Use wave front diagrams to explain refraction in terms of the change of speed that happens when a wave travels between different media.	Investigate the refraction of light by different substances. Construct ray diagrams to illustrate the refraction of a wave at the boundary between two different media.
SEPARATE PHYSICS ONLY Sound Waves HT only	Sound waves can travel through solids causing vibrations in the solid. Vibrations are passed through the ear to cause the sensation of sound. The range of normal human hearing is from 20 Hz to 20 kHz.	<i>Use models to observe the connections between different parts of the ear.</i>
SEPARATE PHYSICS ONLY Waves for detection and exploration HT only	Seismic waves are produced by earthquakes. P- waves are longitudinal seismic waves and travel at different speeds through solids and liquids. S- waves are transverse seismic waves and cannot travel through a liquid. Differences in velocity, absorption and reflection between different types of waves in solids and liquids can be used both for detection and exploration of places that are not directly observable. Evidence obtained from seismic waves informs us about the structure of the Earth.	Use knowledge and $v = f \lambda$ to find the depth of a sea bed in echo-sounding. Use knowledge and $v = f \lambda$ to find the depth of rock boundaries and the structure of the Earth's core.
SEPARATE PHYSICS ONLY Uses of ultrasound HT only	Ultrasound waves have a frequency higher than the upper limit of hearing for humans. In ultrasound scans, the waves are partially reflected when they meet a boundary between two different media.	Use knowledge and $v = f \lambda$ to find the depth of a tissue boundary in an ultrasound scan.

PHYSICS	Students will know and remember	So that they can
Light		
SEPARATE PHYSICS ONLY Different types of reflection	Describe and recognise diffuse and specular reflection. Know the law of reflection. Know how to draw the image formed by a plane mirror. Know that the image is virtual, upright and laterally inverted and what these terms mean.	Use terms normal, angle of incidence and angle of reflection and apply them correctly to a ray diagram. Investigate the reflection of light by a plane mirror. Complete a ray diagram to show where the image will be.
SEPARATE PHYSICS ONLY Refraction of light	Know how the light ray changes direction when entering a more dense or less dense medium. Know that the direction changes because of the change to the speed of the light wave.	Use a ray box to investigate refraction of light at boundaries. Use the normal and a ruler to show correct refraction at a boundary on a ray diagram.
SEPARATE PHYSICS ONLY	Know that light can be transmitted, absorbed or reflected.	Make observations of different coloured objects under different colours of light.
Light, surface and colour	Each colour of light has its own band of wavelength and frequency. Explain that opaque objects reflect light. The colour we perceive is the combination of colours they reflect. If all wavelengths are reflected we see white. If all wavelengths are absorbed, we see black. Explain that colour filters absorb certain wavelengths and transmit others. Recognise and explain how transparent or translucent materials transmit light.	Make observations of different coloured objects viewed through different colour filters.
SEPARATE PHYSICS ONLY	Know that a lens forms an image by refracting light.	Use a convex lens with a ray box to show image formation.
Convex (converging) lenses	Parallel rays of light are brought to a focus at the principal focus. Distance from the lens to principal focus is called the focal length. Explain the terms; virtual, real, magnified, diminished, inverted, upright when related to an image.	Use a ray diagram to show how parallel light rays are refracted to the principal focus by the convex lens.

SEPARATE	The image produced by a convex lens can	Use a convex lens with a distant object to illustrate
PHYSICS ONLY	be either real (for a camera) or virtual (for	formation of a real, diminished image.
Different images with a convex lens	a magnifying glass or to correct long sight). Know the steps to follow to complete ray diagrams in either case.	Draw 3 rays onto a ray diagram to show how the real, inverted, diminished image is formed. Use a convex lens with an object closer than the focal length to illustrate formation of a magnified, virtual, upright image. Draw 2 rays onto a ray diagram to show how this image is formed.
SEPARATE	The image produced by a concave lens is	Use a concave lens and a ray box to show diverging
PHYSICS ONLY	always virtual (to correct short sight).	rays.
Concave (diverging) lenses	Parallel rays of light diverge, appearing to come from the principal focus.	Draw 2 rays onto a ray diagram to show how the virtual, diminished, upright image is formed.

PHYSICS Electromagnetic Waves	Students will know and remember	So that they can
Describe the electromagnetic spectrum	EM waves are transverse, transfer energy, form a continuous spectrum and travel at the same velocity through a vacuum (space) or air. Know the 7 groups and their order in terms of λ and f.	Use the speed of light in the wave equation. Complete the EM spectrum with missing groups.
Explain the properties and applications of radio waves, microwaves, infrared and visible light.	Radio waves for TV and radio. Microwaves for satellite TV, mobile phone comms, cooking food. Light and infrared for internet broadband comms (optical fibre). Also, infrared for heating and IR cameras. Only one group of waves is detectable with our senses.	Use wave properties to compare how these different waves are used in communications. HT only Draw diagrams showing light or infrared waves travelling down an optical fibre.
Analyse how the nature of a surface affects the radiation incident on it.	Req prac 10. The amount of infrared radiation absorbed or radiated by a surface depends on the nature of the surface.	Plan, carry out and write up a practical to investigate this.
Explain the properties, uses and dangers of UV, X-rays and gamma waves.	Ultraviolet causes skin tanning / cancer. X-rays can be absorbed by denser materials (bone) but penetrate less dense ones (muscle, skin). Gamma penetrates most materials, absorbed by lead.	Interpret an X-ray photograph to see what is within a body. Use data to assess the risks and consequences of exposure to radiation.
Justify the use of X-rays and gamma in medicine.	Ionising properties of higher energy radiation causes damage to living cells. Radiation dose (in sieverts) is a measure of the risk of harm resulting from an exposure of the body to the radiation.	Investigate how gamma is used in medical imaging and to treat disease with minimum harm to healthy cells.

PHYSICS	Students will know and remember	So that they can
Electromagnetism		
Describe a magnetic field.	 Iron, steel, cobalt and nickel are magnetic materials. A magnetic field is the region around a magnet where a force acts on a magnetic material (attractive) or on another magnet (attractive or repulsive). The field is strongest at the poles of the magnet & weakens with distance. Magnetic field lines go from the north (seeking) pole of a magnet to the south(seeking) pole. The Earth has a magnetic field. A compass needle is a small magnet that points in the 	Complete diagrams of magnetic fields around magnets showing the strength, direction and shape of the field. Predict the direction of the force on a magnet in a magnetic field. Describe how to plot the magnetic field pattern of a magnet using a compass. Use a magnetic compass to explain that the core of the Earth must be magnetic.
Describe the magnetic effect of an electric current	direction of the Earth's magnetic field. A current through a conducting wire produces a magnetic field around it. The strength of the magnetic field depends on the size of the current through the wire and the distance from the wire. Shaping a wire to form a solenoid increases	Make observations of the magnetic effect of a current in a wire and a solenoid. Draw the magnetic field pattern for a straight wire carrying a current Draw the magnetic field pattern inside and outside a solenoid.
	the strength of the magnetic field. An electromagnet is a solenoid with an iron core (to increase the field strength).	Describe the difference between a permanent and induced magnet.
Explain how devices use electromagnetism HT only	The electric motor: A coil of wire on an axle, carrying a current, in a magnetic field, tends to rotate. Loudspeakers and headphones: Variations in current in a coil within a magnetic field, cause variations in movement of the coil and attached diaphragm. This creates the pressure variations of sound waves.	Label a diagram of an electric motor. Explain how the force on a conductor in a magnetic field causes the rotation of the coil in an electric motor. Label a diagram of a loudspeaker. Explain how a moving-coil loudspeaker or headphones work.
Describe and explain the motor effect HT only	 When a conductor carrying a current is placed in a magnetic field the magnet and the conductor exert a force on each other. For a conductor at right angles to a magnetic field and carrying a current: force = magnetic flux density × current × length F = B I Units are: Newtons N, Tesla T, Amperes A, metres m 	Use fingers of your left hand (Fleming's L H rule) to correctly represent the force, current in the conductor and magnetic field. Explain how to increase the force on the conductor. Predict the direction of the force, current or magnetic field. Use the equation F = B I I in calculations.

SEPARATE PHYSICS ONLY Explain the generator effect HT only	A change in the magnetic field around a conductor, induces a potential difference across the ends of the conductor. If the conductor is part of a complete circuit, a current is then induced. An induced current generates a magnetic field that opposes the original change, either the movement of the conductor or the change in magnetic field. A microphone uses the generator effect when sound waves vibrate a diaphragm that is attached to a coil within a magnetic field. When the coil moves it generates a varying current.	Explain what causes a p.d. and current to be induced. Explain what increases the size of the induced p.d. and current. Explain what changes the direction of the induced p.d. and current. Label parts of a diagram of a microphone and explain how it generates a varying current.
SEPARATE PHYSICS ONLY Compare a.c. and d.c. generation HT only	The generator effect is used with slip-rings and brushes in an alternator to generate an alternating p.d. and a.c. In a dynamo the generator effect is used with a split-ring commutator to swap the connection to the circuit every half turn to generate d.c.	Label key parts of an alternator and explain how it generates a.c. Label key parts of a dynamo and explain how it generates d.c. Draw/interpret graphs of potential difference generated in the coil against time, for each one.
SEPARATE PHYSICS ONLY Transformers HT only	A basic transformer consists of a primary coil and a secondary coil wound on an iron core. Iron is used as it is easily magnetised. vp / vs = np / ns Where Vp is the p.d. across the primary coil, Vs is the p.d. across the secondary coil, np is the number of turns on the primary coil, ns is the number of turns on the secondary coil. $Vs \times Is = Vp \times Ip$ Where Vs $\times Is$ is the power output (secondary coil) and Vp $\times Ip$ is the power input (primary coil). If transformers were 100% efficient, the electrical power output would equal the electrical power input. The National Grid is a system of cables and transformers linking power stations to consumers.	Use the equation $vp / vs = np / ns$ Identify a step-up or step-down transformer from the number of turns on each coil. Use the eqn $Vs \times Is = Vp \times Ip$ Explain how an alternating current in one coil induces an alternating current in another, via a changing magnetic field. Use the equations above to explain why power is transmitted across the National Grid at high potential differences and used at lower ones.