
 

YEAR 11 Autumn Term 

(Cycle 1) 

Spring Term 

(Cycle 2) 

Summer Term 

(Cycle 3) 

Students 
will know 
and 
remember
… 

Defensive Design:  

Input sanitisation/validation; 
Planning for contingencies; 
Anticipating misuse; 
Authentication 

Testing: Comments; 
Indentation; Sub-Programs 

The purpose of testing 
(iterative and final/terminal) 

How to identify syntax and 
logic errors 

How to select and use 
suitable test data (normal, 
erroneous, extreme) and 
understand the difference 
between valid and invalid 
data 

Threats: 

Malware (Virus, Worm, 
Trojan); Phishing; People as 
the weak point; Brute force; 
Denial of service; Data 
interception and theft; SQL 
injection 

Identifying and preventing 
vulnerabilities, including: 
Penetration Testing; Network 
Forensics; Network Policies; 
Anti-Malware; Firewalls; User 
Access Levels; Passwords; 
Encryption 

Operating Systems – Purpose 
& Functions: 

Operating Systems: User 
interface; Memory 
management/multitasking; 
Peripheral management and 
drivers; User management; 
File management 

Utility systems software: 
Encryption software; 
Defragmentation; Data 
compression; The role and 
methods and backup (Full and 
incremental) 

Languages – High vs Low 
Level: 

Characteristics and purpose of 
different levels of 
programming language: High 
level languages and low level 
languages 

The differences between high 
and low level programming 
languages 

The purposes of translators 

The characteristics of a 
compiler and an interpreter 
and the differences, benefits 
and drawbacks of using a 
compiler or an interpreter 

Computational thinking 

Principles of computational 
thinking: Abstraction; 
decomposition and 
algorithmic thinking. 

Inputs, processes, and outputs 
for a problem.   

Practical Programming Skills 

 

 Theory Revision & Practical 
Programming  

Students will be able to apply all 
knowledge learned across the 
two years of study and apply it to 
the skills required for practical 
programming 

Exam skills practice 

 



Ethical & Legal 

How to investigate and 
discuss Computer Science 
technologies while 
considering: Ethical issues; 
Legal issues; Cultural issues; 
Environmental issues; Privacy 
issues 

How key stakeholders are 
affected by technologies 

The environmental impact of 
Computer Science 

The cultural implications of 
Computer Science 

Open source and proprietary 
software 

Legislation relevant to 
Computer Science: The Data 
Protection Act 1998; 
Computer Misuse Act 1990; 
Copyrights Designs and 
patents Act; Creative 
Commons Licensing; Freedom 
of Information Act 

Practical Programming Skills 



So that 
they can… 

Defensive Design & Testing: 

Describe how the defensive 
design considerations can 
improve results in a more 
robust program 

Describe how comments and 
indentation can improve the 
maintainability of programs 

Correct syntax and logic 
errors found in given 
examples of code 

Explain why it is important to 
consider defensive design 

Explain the importance of 
commenting, indentation and 
sub-programs 

Explain why different types of 
test data are suitable to given 
situations 

Threats: 

Identify the two main TYPES 
of attack (Passive, Active) that 
can take place on a network 

Identify measures that can be 
implemented to reduce the 
threats faced by networks 
(Good Network Policy, 
Penetration Testing, Network 
Forensics, Passwords, User 
Access Levels, Anti-Malware, 
Encryption) 

Describe how the two TYPES 
of attack might take place 

Describe how each of the 
forms of threat work 

Describe how the 
implementation of different 
measures could improve the 
security of data on a network 

Give examples of what the 
intention/outcomes of the 
two TYPES of attack might be 

Explain the purpose of the 
different forms of threat 

Operating Systems – Purpose 
& Functions: 

Languages – High vs Low 
Level: 

Understand why an 
interpreter may potentially be 
better when designing a 
program and a compiler 
better for distributing a 
program 

Understand the differences 
between high level language 
and low level language 

Be able to translate high level 
language into machine code in 
order to run 

Describe the advantages of 
writing a program in a high 
level language instead of an 
assembly language 

Computational thinking: 

Understand the principles of 
computational thinking and 
how they are used to define 
and refine problems 

Understand the 
computational thinking means 
creating a logical solution to a 
problem, not thinking like a 
computer 

Understand that abstraction 
means focusing on the 
important details and ignoring 
the rest 

Understand that 
decomposition means 
breaking down a problem into 
smaller, easier to solve tasks 

Understand that algorithmic 
thinking means creating a step 
by step set process of reaching 
a solution 

  



Identify the each of the 
purposes of operating 
systems 

Identify the different types of 
utility software 

Describe the function of each 
aspect of the operating 
system 

Explain why different types of 
OS are suitable for different 
purposes 

Explain the benefits of using 
each of the types of utility 
software 

Ethical & Legal: 

Describe some scenarios  
where the following issues  
might exist: 
Ethical issues 

Legal Issues 

Cultural Issues 

Environmental Issues 

Privacy Issues: 

Including how it is now  
difficult to keep information  
private 

 

Describe the laws 
surrounding Computer 
Science and data 

Explain how key stakeholders 
are affected by technologies 

Explain the impacts of the 
digital divide 

 


