YEAR 8	Autumn Term	Spring Term	Summer Term
	(Cycle 1)	(Cycle 2)	(Cycle 3)
Students will know	Representations: From clay to	Introduction to Python:	Computing Systems:
and remember	Use of binary representations	How to describe what algorithms and programs are and how they differ	That a general-purpose computing system is a device for executing programs
	How representations are used to store, communicate and process information	That a program written in a programming language needs to be translated in order to be executed	That a program is a sequence of instructions that specify operations that are to be
	appropriate for different tasks	by a machine	performed on data
	Use of characters to represent sequences of symbols	How to write simple Python programs that display messages, assign values to variables and	The difference between a general-purpose computing system and a purpose-built
	How to measure the length of a representation as the number of symbols it contains	receive keyboard input How to locate and correct common	device How to describe the function of
	How symbols are carried on physical media	How to describe the semantics of	in computing systems
	How to explain what binary digits (bits) are, in terms of familiar symbols such as digits or letters	How to use simple arithmetic expressions in assignment statements to calculate values	hardware components used in computing systems work together in order to execute programs
	How to measure the size or length of a sequence of bits as the number of binary digits that	How to receive input from the keyboard and convert it to a numerical value	That all computing systems, regardless of form, have a similar structure (architecture)
	How to describe how natural numbers are represented as sequences of binary digits	form logical expressions How to use binary expressions (if , else statements) to control the flow of program execution	How to analyse how the hardware components used in computing systems work together in order to execute programs
	How to convert a decimal to binary and vice versa How to convert between	How to generate and use random integers	How to define what an operating system is, and recall its role in controlling program
	different units and multiples of representation size	How to use multi-branch selection (if, elif, else statements) to control	execution How to describe the NOT, AND
	How to provide examples of the different ways that binary digits are physically represented in digital devices	How to describe how iteration (while statements) controls the	and OR logical operators and how they are used to form logical expressions
	ugital devices	How to use iteration (while loops) to control the flow of program execution	How to use logic gates to construct logic circuits and associate these with logical operators and expressions
		How to use variables as counters in iterative programs	How to describe how hardware is built out of increasingly complex logic circuits
		selection to control the flow of program execution	That, since hardware is built out of logic circuits, data and
		How to use Boolean variables as flags	represented using binary digits

	How to provide broad definitions of 'artificial intelligence' and 'machine learning'
	How to identify examples of artificial intelligence and machine learning in the real world
	How to describe the steps involved in training machines to perform tasks (gathering data, training, testing)
	How to describe how machine learning differs from traditional programming
	How to associate the use of artificial intelligence with moral dilemmas

So that	Representations: from clay to	Introduction to Python:	Computing Systems:
they can	silicon:	Write and execute their first	Compare calculating machines
	Understand the use and	programs in Python	from the past to modern
	characteristics of	Lundarate and the beside of disular inc	general-purpose computers
	representations	messages assigning values to	Connect the abstract idea of a
	Be prepared for their	variables, and receiving input from	program to the applications
	encounters with binary	the keyboard	they use
	representations in the context	, , ,	,
	of computing	Move on from their previous	Execute programs themselves
	Understand how to encode.	Scratch	Discover how all computing
	transmit and decode short		systems, regardless of form or
	messages	Understand what algorithms and	capabilities, make use of the
	Inderstand text	different	memory storage input and
	representations using		output and devices, and
	sequences of symbols and	Build an understanding of what it	communication components
	distinguish between them	means to express instructions in a	
	Understand the way in which	formal language and now these	Understand how each of the
	symbols are embodied in	executed by a machine	together in order to execute
	physical media		programs
		Gain a deeper understanding of	
	Associate binary digits with	assignments and explicitly address	Understand the operating
	letters and decimal digits	misconcentions around the	managing the complexity of
		semantics of assignment	modern computing devices
	Solve simple problems that	statements	
	reinforce the connection	Understand how to use arithmetic	Master the use of logical
	information and its binary	expressions and receive numerical	expressions in software
	representation	input from the keyboard	Bridge the gap between logic
			and circuits and make the direct
	Consider why binary digits are	Construct their own short	link between them
	conjunction with computing	programs	Understand the hierarchy of a
	systems	Understand how to use selection	computing system, from
		and randomness to develop a	programs to the hardware
	Build upon their familiarity with	number guessing game	responsible for executing the
	system	Use multi-branch selection	programs
		Comprehend when and how	Define the term 'artificial
	Draw analogies with how	selection should be used	intelligence
	numbers can be represented		Investigate machine learning
		Understand the mechanics of how	and its relationship with
	Convert between binary and	Iteration works	conventional programming
	decimal	Import and use functions from	Gain insight into what training a
	Understand bytes and the	modules so they can understand	model involves and the ethical
	prefixes used for measuring	how a text-based language can be	considerations that are tied into
	representation size such as kilo-	more powerful than block-based	building any system that makes
	, mega-, giga- and tera	Ialiguages	decisions
		Combine iteration and selection to	
		create a times tables practice game	