	(Substantive Knowledge)	(Disciplinary and Procedural
BIOLOGY Biodiversity & Ecosystems	Students will know and remember	Knowledge) So that they can
Explain the importance of Biodiversity	Definition of Biodiversity Organisation of an ecosystem Factors which affect the stability of an ecosystem and how this affects biodiversity Reasons why humans rely on Biodiversity Ways in which human activity affects biodiversity	Describe methods used to quantify biodiversity Identify biodiversity hotspots and describe the differences between ecosystems
Discuss and describe the effects of human population growth	The human population has expanded rapidly in the last 200 years Humans use land and resources for agriculture, building, quarrying, energy, dumping waste.	Analyse data to describe trends in human population growth Discuss and describe evidence which shows the impact of human population growth on biodiversity
Link human activities to the impact of land pollution on biodiversity	Improper waste disposal leads to pollution Toxic chemicals spread through the soil to pollute the land Definition of Bioaccumulation Structure of a food chain/web Toxic chemicals from herbicides and pesticides build up in the food chain	Construct food chains and food webs and use these to predict the impact of land pollution. Analyse evidence to show the effect of toxic herbicides and pesticides on an ecosystem
Link human activities to the impact of water pollution on biodiversity	Improper waste disposal leads to pollution Definition of bioaccumulation Structure of a food chain/web Fertilisers contain NPK Fertilisers build up in lakes which leads to eutrophication Description of eutrophication	Construct food chains and food webs and use these to predict the impact of land pollution. Analyse evidence to show the effect of toxic herbicides and pesticides on an ecosystem
Link human activities to the impact of air pollution on biodiversity	Vehicles and factories burn fossil fuels The sulphur dioxide produced when burning fossil fuels leads to the formation of acid rain Acid rain causes lakes and streams to become acidic	Analyse data to describe and explain the changes in SO ₂ emissions in difference countries. Describe how to analyse and quantify the pH of lakes and streams (LINK: Atmospheric pollutants – Chemistry)
Analyse and evaluate the use of peat bogs	Peat is a substance made from plant material that cannot decay. Peat bogs are a significant carbon sink Peat is an important habitat Peat is burned for fuel and used as fertiliser	Describe the source of conflict between the need for cheap fertiliser and the need to conserve peat bogs Analyse data to show the rate and impact of peat bog destruction

Evaluate the environmental implications of deforestation	Forests are a significant carbon sink Deforestation occurs to produce timber, to clear land, to grow crops or to raise cattle Deforestation leads to a loss of Biodiversity	Analyse data to show the rate and impact of peat bog destruction
Describe the biological consequences of global warming	The Greenhouse Effect is vital for all life on Earth Burning fossil fuels releases greenhouse gases which increases the greenhouse effect. An increase in the greenhouse effect leads to global warming and climate change	The scientific consensus about global warming is based on thousands of datasets and peer reviewed research. Evidence may be uncertain
Identify and explain how human intervention can maintain biodiversity	Scientists and concerned citizens have put measure in place to maintain biodiversity such as: - Breeding programmes - Conservation zones - Reintroduction of field margins and hedgerows - Reduction of deforestation - Recycling	or incomplete Explain and evaluate the conflicting pressures on maintaining biodiversity. Evaluate information about methods that can be used to tackle negative human impact on the environment
Evaluate the effect of environmental change on the distribution of organism	A seasonal or geographical change in environment can impact the distribution of organisms Climate change has affected the distribution of British Birds	Quadrats and belt transects are used to measure the distribution of organisms Thermometers, oxygen meters, pH meters, rain gauges, are used to measure and track environmental changes
BIOLOGY ONLY Describe and construct pyramids of biomass to represent an ecosystem	 Trophic levels represent the organisation in an ecosystem (there is a limit to the number of trophic levels) Pyramids of Biomass represent the relative amount of biomass at each trophic level Energy and Biomass is transferred between trophic levels Producers are mostly plants and algae which transfer about 1% of the incident energy from light 	Construct pyramids of biomass and pyramids of numbers Biomass is measured as the dry mass of biological material in grams
BIOLOGY ONLY Explain how and why biomass is lost between trophic levels	Approximately 10% of the biomass from each trophic level is transferred to the level above it. Biomass is lost because: Not all ingested material is absorbed Some absorbed material is lost as waste	Calculate the efficiency of biomass transfer between trophic levels Explain how efficiency of biomass transfer affects the number of trophic levels in an ecosystem (and link to food production) Describe how to measure the loss of biomass in germinating peas
BIOLOGY ONLY Describe and evaluate factors which affect global food security	Food security means having enough food to feed a population Factors affecting food security include: - Increasing birth rates - Changing diets in developed countries	Analyse data to describe and explain the impact of changes in Quinoa production in Bolivia

	 New pests and pathogens Environmental changes Global conflicts Cost of agricultural inputs 	Interpret population and food production statistics to evaluate food security.
BIOLOGY ONLY Describe and evaluate methods of food production	The efficiency of food production can be improved by restricting energy (biomass) transfer from animals to the environment Controlling net size and use of fishing quotas are important in sustainable fishing practices	Analyse and evaluate the ethical and environmental implications of different methods of improving food security
BIOLOGY ONLY Explain the role of biotechnology and genetic engineering in ensuring food	<i>Fusarium</i> is a fungus which is used for making mycoprotein (which is used to make Quorn). Bacteria can be genetically modified to produce human Insulin Golden rice is a Genetically Modified crop which has an	<i>Fusarium</i> is grown using a batch growth method. The fungus is grown on glucose syrup in aerobic conditions. The biomass can then be harvested.
security	increased Vitamin A content.	(LINK back to Genetic Engineering process)

	(Substantive Knowledge)	(Disciplinary and Procedural
BIOLOGY The Human		Knowledge)
Nervous System	Students will know and remember	So that they can
Describe the organisation of control systems	All living organisms must be able to respond to changes in external and internal conditions.	
and their importance for homeostasis	Homeostasis is the regulation of the internal conditions of a cell or organism (this includes temperature, pH and glucose concentration)	
	Homeostasis involves automatic control systems which may involve a nervous response or a chemical (hormonal) response)	
	All control systems include receptors, co- ordination centres and effectors	
Describe the structure and function of the human nervous	The nervous system uses electrical impulses to enable you to react to your surroundings and coordinate behaviour	Identify structures associated with the nervous system using micrographs.
system	Cells called receptors detect stimuli.	
Explain how the nervous system allows an organism to respond to changes	Receptors send an impulse along sensory neurons, to the central nervous system (brain and spinal cord), the brain coordinates the response and sends an impulse along the motor neurone to the effector organs.	
Investigate the effect of caffeine on	A ruler drop test can be used to measure reaction times	Plan and carry out a safe and accurate scientific investigation using the ruler drop test
reaction times	A hypothesis is an idea or question to be investigated.	Translate information about reaction times between numerical
	The independent variable is the one that is changed by the investigator	and graphical forms
	The dependent variable is measured for each change in the independent variable	
Describe the structure and	Control variables must be kept the same Reflex actions are automatic and rapid, they do not involve the conscious part of the brain.	
function of a reflex arc	Reflex actions are important in helping organisms to avoid danger. They also control basic bodily functions such as breathing and digestion.	
Explain how	The main stages of a reflex arc are:	
reflexes work		

	Stimulus \rightarrow receptor \rightarrow sensory neurone \rightarrow relay	
	neurone \rightarrow motor neurone \rightarrow effector \rightarrow response	
	Synapses are the gaps between two neurons.	
	Neurotransmitters cross the synapse and start the	
	impulse in the next neuron.	
	In a reflex action, the coordinator is a relay neuron	
	located either in the spinal cord or the	
	unconscious part of the brain (this is why it is so	
	fast)	
BIOLOGY	The brain controls complex behaviour. Different	Explain how scientists find out
ONLY	regions of the brain carry out different functions	about the structure and function
Identify and	(including the cerebral cortex, cerebellum and	of the different parts of the brain
describe the	medulla)	
functions of key		Explain the difficulties in
structures in the		investigating brain function and
human brain		treating brain damage/disease.
BIOLOGY	The eye is a sensory organ containing receptors	Compare the structure of a
ONLY	sensitive to light intensity.	human eye to that of an octopus
Identify and		and a fly
describe the	The structure and function of the retina, optic	
structure and	nerve, sclera, cornea, iris, ciliary muscles,	
function of the	suspensory ligaments.	
human eye		
	Accommodation is the process of changing the	
	shape of the lens to focus on near and distant	
	objects	
BIOLOGY	The muscular iris controls the size of the pupil and	Construct ray diagrams to show
Describe how a	the amount of light entering the eye	how an image is formed on the
visual stimulus		retina
is translated to a	The ciliary muscles and suspensory ligaments	
visual image in	change the shape of the lens to focus light onto	
the brain	the retina	
	The optic nerve carries impulses from the retina to	
	the brain	
BIOLOGY	In Myopia the light is focussed in front of the	Construct ray diagrams to explain
ONLY	retina and can be corrected with a concave lens.	myopia and hyperopia
Compare		
myopia with	In Hyperopia the light is focussed behind the	Construct ray diagrams to explain
hyperopia and	retina and can be correct with a convex lens.	vision correction
explain how this		
can be	Sight defects can be treated using spectacles,	Evaluate options for vision
corrected	hard/soft contact lenses, laser surgery and	correction
	replacement lenses.	concetion

BIOLOGY Hormonal CoordinationSudents will know and rememberCondition of the internal conditions of a cell or organism (this includes temperature, pH and glucose concentration)Identify organs of the huma endocrine system from diag and micrographs	
CoordinationStudents will know and rememberSo that they canCompare the role and actionHomeostasis is the regulation of the internal conditions of a cell or organism (this includesIdentify organs of the huma endocrine system from diagonal	
Compare the role and actionHomeostasis is the regulation of the internal conditions of a cell or organism (this includesIdentify organs of the huma endocrine system from diag	
role and action conditions of a cell or organism (this includes endocrine system from diag	
	grams
of nerves and hormonestemperature, pH and glucose concentration)and micrographs	
Homeostasis involves automatic control systems Compare the role and action	on of
which may involve a nervous response or a nerves and hormones	
chemical (hormonal) response	
The endocrine system is composed of glands which	
secrete hormones into the bloodstream. Blood	
carries hormones to the target organ which	
produces an effect.	
Identify andThe position and role of the following:Observe glands as they app	
describe the Pituitary gland (master gland) in micrographs and on MRI	
role of glands in the humanPancreasscans	
endocrine Adrenal gland	
system Ovary	
Testes	
HT ONLY Negative feedback systems help to maintain a	
Give examples steady state. A negative feedback loop occurs when	
and describe the the response to a change leads to a decrease in that	
importance of change.	
of negative feedback Positive feedback loops also exist (e.g. oxytocin and	
feedbackPositive feedback loops also exist (e.g. oxytocin and contractions when giving birth)	
Describe and The pancreas monitors and controls blood glucose Explain how to measure an	d
explain the role concentration.	u
of hormones in concentration	
glucose Insulin causes increased uptake of glucose by cells	
homeostasis Insulin causes glucose to be stored in the liver as Identify and explain the	
glycogen symptoms of hypoglycaem	ia
Glucagon causes the breakdown of glycogen back and hyperglycaemia	
into glucose	
Glucose homeostasis is an example of a negative	
feedback loop	
Explain and In Type I diabetes the pancreas does not secrete Extract information and	
evaluate the enough Insulin. Type I diabetes is usually controlled interpret data from graphs	to
treatments for by injecting insulin. explain the effect of insulin	
Type I and Type people with and without	
II Diabetes In Type II diabetes the body stops responding to its diabetes	
own insulin. Type II diabetes is often controlled by	
diet and exercise. Correctly determine the	no c := ±
difference between a treat Transplants can be used to cure diabetes and a cure	ment
Describe the During puberty reproductive hormones cause	
role of the secondary sex characteristics to develop.	
human	

reproductive hormones	During puberty an egg matures and is released from the ovaries approximately every 28 days – this is ovulation.	
	The main female reproductive hormones are: FSH; Oestrogen; LH; Progesterone	
	Testosterone is the main male reproductive hormone. It is produced by the testes and causes the release of sperm.	
Explain the role of hormones in controlling the menstrual cycle	FSH causes the maturation of an egg in the ovary Oestrogen causes the lining of the uterus to develop LH triggers ovulation Progesterone maintains the lining of the uterus	Interpret graphs to explain the relative levels of female reproductive hormones throughout the menstrual cycle
	HT ONLY: Female reproductive hormones interact to control the menstrual cycle	
Explain and evaluate the use of hormones in the artificial control of fertility	Fertility can be artificially controlled by several hormonal and non-hormonal methods. Methods of contraception include: Oral contraception (hormonal) Implants (hormonal) Condoms/diaphragms (non-hormonal)	Explain how hormonal contraception decreases fertility
	Hormonal Injections (hormonal) Spermicidal agents (non-hormonal)	
SEPARATE BIOLOGY ONLY	FSH and LH can be used as a fertility drug to stimulate egg production.	Explain how LH levels can be measured
Evaluate Infertility treatments	IVF uses FSH and LH	Evaluate the advantages and disadvantages of infertility treatments
Explain how plants use hormones to	Plants can respond to light (phototropism) and gravity (gravitropism)	Interpret the experimental observations to explain the role of auxins in phototropism.
respond to light and gravity	Auxins stimulate cell elongation in shoots and inhibit cell elongation in roots to control phototropism and gravitropism.	Observe the effect of gravity on shoot growth.
	Light causes auxins to collect on the shaded side of a shoot	
SEPARATE BIOLOGY ONLY	Auxins are used as weed killers, rooting powders and in tissue culture.	Evaluate the use of plant hormones to ensure food security
Explain how plant hormones are used in	Ethene is used to control fruit ripening Gibberellins can be used to increase fruit size,	
agriculture and horticulture	promote flowering, cause germination and increase the yield of sugar cane	

	(Substantive Knowledge)	(Disciplinary and Procedural
BIOLOGY Homeostasis in Action	Students will know and remember	Knowledge) So that they can
SEPARATE BIOLOGY ONLY Explain how and why the body	Thermoregulation is the control of body temperature. Most mammals require a core body temperature of 37.5°C	Explain how homeostatic mechanisms lower or raise body temperature.
maintains a constant core temperature	The thermoregulatory centre in the brain monitors and controls body temperature.	Apply knowledge of enzymes to describe the importance of thermoregulation.
	Receptors in the thermoregulatory centre detect changes in blood temperature. Receptors in the skin send nerve impulses to the thermoregulator centre	
	Vasodilation and sweating lead to cooling. Vasoconstriction and shivering lead to warming	
Explain how and why the body must remove	Removal of metabolic waste is an important aspect of homeostasis	Apply knowledge of osmosis and the liver to outline the importance of removing
metabolic waste (excretion)	Excess water, ions and urea are removed via the kidneys in the urine.	metabolic waste
	If body cells gain or lose too much water by osmosis, they will not function efficiently	
SEPARATE BIOLOGY ONLY	Structure and functions of the kidney (and nephron)	Observe the glomerulus, Bowman's capsule and kidney tubules using a microscope
Describe the structure and function of the	The kidneys produce urine by filtration of the blood and selective reabsorption of useful substances	Translate tables and bar charts or glucose, ions and urea before
kidney SEPARATE BIOLOGY ONLY	Osmoregulation is the control of water levels in the body.	and after filtration
Describe osmoregulation in terms of ADH	Osmoreceptors near the hypothalamus detect the water content of the blood.	
and negative feedback	The water level in the body is controlled by the hormone ADH which acts on the kidney tubules to control how much urine is produced – this is an example of negative feedback	
SEPARATE BIOLOGY ONLY	Dialysis uses a membrane and a counter current flow mechanism to remove waste substances from the blood	Describe how kidney dialysis works
Explain how metabolic waste is removed in		Compare the removal of metabolic waste in the glomerulus and in kidney
kidney dialysis SEPARATE	Glomerular Filtration Rate is often used to assess	dialysis Evaluate the advantages and
BIOLOGY ONLY	kidney function.	disadvantages of treating organ failure by transplant or dialysis

Describe and	Dialysis or kidney transplant is often used to treat
evaluate	patients who are suffering from kidney failure
treatments for	
kidney failure	

BIOLOGY	(Substantive Knowledge)	(Disciplinary and Procedural
Reproduction and Inheritance		Knowledge)
	Students will know and remember	So that they can
Define and identify the differences between sexual and asexual reproduction	Sexual reproduction involves the fusion of two gametes (sperm and ova/pollen and ova) Asexual reproduction does not require gamete fusion and requires just mitosis for cell division. Sexual reproduction produces variation. Asexual reproduction produces genetically identical cells/organisms	Recognise why clones are produced and how this is used to replace worn out tissues in the body Explain why propagation techniques work Explain why variation is useful to organisms and could promote characteristics such as tolerance.
Consider and explain how gametes are produced in the	Sexual reproduction involves the fusion of two gametes	Explain how meiosis differs from mitosis
process of meiosis	Gametes are produced in the ovaries and testes (or ovule of plants) in a process called meiosis	Explain how meiosis creates variation
	Meiosis has two divisions and during the process, crossing over can occur, which together with random shuffling, promotes variation	
	Meiosis produces 4 new cells which are haploid	
SEPARATE BIOLOGY ONLY Explain the	Variation produced by sexual reproduction is favourable for the process of natural selection, if the environment changes (Tolerances/resistances)	Evaluate which process is preferable dependant on the organism and the conditions.
advantages and disadvantages of sexual and asexual reproduction	Selective breeding mechanisms can promote the outcome of favourable characteristics	Explain why seed banks are maintained (genetic diversity and unknown traits such as potential tolerances to drought etc)
Provide and explain the benefit to organisms who perform both sexual	Asexual reproduction is faster and more efficient – Many more organisms can be produced	Explain why plant propagation uses tissue culture/cuttings to produce new plants
and asexual reproduction	Malarial parasites reproduce asexually in the host but sexually in mosquito	Explain the benefit of both mechanisms in organisms that can reproduce in either manner
	Fungi produce spores but can also reproduce via hyphae strands	
	Strawberries can reproduce via seeds or runners	

Define genome and describe how its knowledge is beneficial is medicine Describe the structure of DNA	The genome is the entire genetic material of an individual Our DNA provides the instruction for all proteins in the body, thereby all characteristics DNA is a polymer comprised of two polynucleotide strands held together in a double helix DNA is coiled up to form chromosomes. Genes are small section of DNA on chromosomes and are the instructions for proteins (they provide the base sequence for amino acids)	Describe how DNA determines the amino acid sequence, which in turn, determines the protein that is made. Mistakes in this process lead to mutations which can give rise to disease Evaluate how knowledge of the genome and faults in the sequencing can be used to create targeted medicines and the risk/benefits of this approach.
SEPARATE BIOLOGY ONLY Describe the structure of DNA as a polynucleotide	DNA is a molecule that determines all characteristics by providing the instruction for protein formation and folding DNA is built from multiple nucleotides, consisting of a phosphate group, a ribose sugar and a nitrogenous base (A,C,G,T) DNA bases are complimentary (C and G, A and T) The sequence of bases determines the	Draw and label a nucleotide Recognise how the sequence of amino acids is vital in determining the protein which is produced Evaluate how the production of a protein is vital to its function eg. Enzyme specificity and Immunoglobulins
SEPARATE BIOLOGY ONLY Describe and explain the process of protein synthesis	 polypeptide sequence of amino acids Sections of DNA are copied using mRNA which is small enough to leave the nucleus via a pore. Protein synthesis occurs at ribosomes. Carrier molecules bring in specific amino acids based on their complimentary fit to a triple code on the mRNA molecule. Once the polypeptide strand is built, it then folds to form a unique shape, which determines its function 	Evaluate why a change in base sequence can have no effect, through to significant effect. Evaluate why proteins depend on their unique build for function eg. Collagen made of 3 intertwining polypeptide strands for high tensile strength

SEPARATE BIOLOGY ONLY Explain how mutations may occur and the resulting potential impact Explain the function of coding/non coding sections of DNA	Describe a mutation as a change/deletion or addition in the base sequence Recall the purpose of the triplet code in determining the base sequence of amino acids Evaluate how a mutation can affect the reading, production and folding of a protein and the resulting impact on function Define genotype and phenotype and determine that DNA has coding and non- coding parts. Non-coding parts switch genes on/off	Evaluate how mutations could give rise to protein malfunctions Apply this to working knowledge of enzymes and/or other proteins
Define inheritance terminology Use terminology to predict if genes are expressed or not Recognise that many characteristics are the result of multiple gene expressions	Define the following terms; Gamete Chromosome Gene Allele Dominant Recessive Homozygous Heterozygous Genotype Phenotype Explain that resulting expression of characteristics is called the phenotype and the genome sequence that determined it, is the genotype. Explain that our genotype is the version of gene (Allele) that we have - This is inherited from our parents) Explain that alleles can be dominant (always expressed in the phenotype) or recessive (you need two recessive alleles for them to be expressed in the phenotype) Two of the same alleles represents a homozygous genotype. Different versions of the allele in a genotype represents a heterozygous genotype	Recognise how characteristics are determined by the genotype which yields the resulting phenotype Make predictions as to whether a characteristic will be present or not Apply this to why you can either tongue roll or you cannot Can understand how Mendelian genetics is still used today to determine likelihood of inheritance

Produce a punnet square and extrapolate proportions and ratios of outcomes Utilise family trees to interpret information regarding inheritance	Most phenotypic features are the result of multiple genes, but single gene inheritance can be predicted using a punnet square Draw a punnet square, identifying whether parents/offspring are homo or heterozygous and the likely outcomes for offspring	Recognise where inheritance of a disease may be more likely and thereby consider alternate options Understand how scientists can utilise genomic information to advance medicines
of disease	Interpret information from punnet squares/family trees to ascertain probability of inheritance	
	Use a punnet square to determine inheritance of sex (XX for females, XY for males)	
	Ascertain likelihood of inheritance for diseases such as cystic fibrosis/Huntington's.	
	Evaluate the outcome of a dominant/recessive disorder	
Evaluate the economic, social and ethical issues around embryo screening	Some disorders are inherited – Polydactyly, cystic fibrosis, sickle cell anaemia Understand the outcomes of these 3	Consider the emotional impacts of receiving information from screening
	diseases and why embryonic screening may be sought/advised	Evaluate how the advancement of science is reducing risk and enabling informed choices/actions
	Consider the issues surrounding embryonic screening and evaluate the advantages/disadvantages of its use	

BIOLOGY	(Substantive Knowledge)	(Disciplinary and Procedural
Variation & Evolution		Knowledge)
	Students will know and remember	So that they can
Identify how variation can both be caused by genes and/or the environment Recall that mutations	Variation through the environment can occur and associated examples: scars, muscular tone Variation is also attributed to genetics and associated examples: eye colour, tongue	Recognise characteristics as being attributed to genetics, environment, both and investigate these through collection of data Apply this knowledge to
can give rise to changes in the phenotype	rolling Some variation is down to both: height and weight	understanding how GM crops could be produced to have tailored characteristics or how selective breeding is utilised to give favourable characteristics eg.
	Mutations occur continuously, with few affecting the phenotype – however, in a new environment, a change of phenotype can be advantageous – use the example of the horse to see how change suited new environments	Wheat Recognise that longitudinal twin studies can provide useful information about variation and its causes
Explain how evolution by natural selection was proposed by Charles Darwin and utilise this theory to explain how organisms have changed over time	Darwin proposed his theory of natural selection by studying organisms on the Galapagos – in particular, the varying finch species. Darwin observed that differing species had adaptations that favoured the different environments they were found in Natural selection is the result of random mutations, which give rise to adaptations and where these favour a new environment, those adaptations are selected for and passed onto offspring. A new species is produced when it can interbreed and produce fertile offspring	Apply the laws of natural selection to understand changes to organisms over time and relate this to concepts such as bacterial resistance. Evaluate how natural selection compares to acquired characteristics (Lamarck) and how evidence from fossils and observations supported Darwin's theory and understand why it was controversial when it was first launched
Explain how selective breeding (artificial selection) can be used to create favourable characteristics over time	This can arise from geographical isolation Identify that artificial selection involves humans selecting the best characteristics and then cross-breeding to produce offspring with desired characteristics, which are then cross-bred over many generations until the entirety of the population has the required characteristics. Suggest advantages of this, to include increases in yield or quality or production of resistance/tolerance Identify the disadvantage as being the potential for inbreeding and enhanced likelihood of disease	Recognise how this mechanism has been used over the years to enhance milk and meat yield in cattle Apply to Mendel's use of cross pollinating pea plants to identify 'genes' Consider the ethical issues associated with inbreeding

-		
Describe the process of genetic	Consider how treatments for diabetes and xeropthalmia have been changed by the	Understand why insulin and golden rice were created and the benefits
engineering	advent of GM.	of these
Give an example of	Consider examples of crops that have been	Consider its use in creating
how genetic engineering has been	enhanced through GM	resistances – E.g. Banana plant wilt
deployed to improve	Explain that GM is achieved through	Consider how GM could be utilised
an outcome HT only - Define the	combining genetic sequences from other organisms – HT explain the use of vectors	to treat disorders like Parkinson's
steps in genetic engineering	to carry the desired genes.	Identify and explore ethical issues in utilising vectors to transmit genes
engineering	Describe the stages in GM to include	utilising vectors to transmit genes
Evaluate the advantages and	identification, isolation, removal of and insertion in vector/organisms DNA – to	
disadvantages of GM	include reference to restriction enzymes	
products – particularly, crops.	and Ligase.	
particularly, crops.	Consider how GM insulin removes risk of	
	rejection and ethical issue of pig insulin.	
	Consider how 'super weeds' may be	
	created through transmission of GM genes and why concerns over use exist.	
	and with concerns over use exist.	
SEPARATE BIOLOGY	Recall the use of cuttings and tissue culture in the propagation of new plants	Evaluate the use of tissue culture over cuttings in terms of
Describe and explain		efficiency/yield
how cloning produces genetically identical	Consider the use of embryo transplants into surrogates	Consider the ethical issues
species	into surrogates	surrounding cloning and embryo
	Define the stages of adult cell cloning	transplantation
		Consider how and why Dolly was
		created and the difficulties met with

BIOLOGY	(Substantive Knowledge)	(Disciplinary and Procedural
Genetics and		Knowledge)
Evolution	Students will know and remember	So that they can
Consider how our understanding of genes and dominance originates from Gregor Mendel's work Use punnet squares to demonstrate monohybrid inheritance Explain how Crick and Watson's model of DNA furthered understanding and supported Mendelian genetics	Genes have versions called alleles, which give rise to different varieties of phenotype Mendel investigated allele dominance by cross pollinating pea plants and identified patterns of inheritance Mendel's work was poorly understood and not accepted for some time, due to the absence of further study/technology Understanding the model of DNA yielded further evidence to support our understanding of genetics	Explore how contributing work of other scientists and advances in technology provide support for existing theories
SEPARATE BIOLOGY ONLY Understand the factors that made Darwin's law of natural selection difficult to accept at its launch Consider other research, findings and the results of other scientists and evaluate how these led to acceptance	Lamarck had a theory of evolution called 'Acquired selection' Acquired selection suggested that traits were acquired through behaviours – giraffes gained long necks through stretching Darwin launched his theory later on Natural selection Darwin's ideas were difficult to accept due to; a) It challenged the 'creationist' view b) lack of wider evidence c) mechanisms of inheritance not known or understood Darwin's work was published following his observations of fossils, animal adaptations and was contributed to by Alfred Russel Wallace. Wallace also gathered evidence for evolution based on observation	Understand that scientific collaboration is essential for sourcing supportive evidence
SEPARATE BIOLOGY ONLY Understand the concept of speciation and use it to explain how it can contribute to the formation of new species	Wallace collaborated with Darwin and had theorised the concept of speciation Speciation can be reproductive but is most often geographic Speciation can lead to the evolution of new species – when species are geographically isolated and following variation and adaptations, they become so different, that they can no longer interbreed and produce fertile offspring	Consider how Darwin's finches provided real evidence for evolution by natural selection You can investigate how beak shape is an adaptation that enables feeding to be achieved successfully and qualify your findings

SEPARATE BIOLOGY ONLY Consider and evaluate how Gregor Mendel's work supported Darwin's theories Consider how the work of contributing scientists over time, has developed our understanding of genetics	Understand how Mendel investigated genetic 'units' in pea plants, leading to an understanding of dominance and recessiveness The use of microscopy and observing cell division gathered further evidence to support Mendel The model of DNA provided further evidence	Evaluate how scientific theories are produced and launched Understand how the work of Mendel and others lend further evidence and support for our understanding of the genome
Consider how the fossil record provides evidence for evolution Evaluate how fossilisation occurs and factors needed for the process	Fossils are formed in the absence of microbial action and mineralisation over time Fossils can be found whole or as imprints (preserved traces) Fossils provide evidence for evolution as they show change over time eg. The horse The fossil record is incomplete and does not provide conclusive evidence	Investigate fossil remains and geological evidence to surmise how they provide evidence for evolution Use evolutionary trees to see the connections and timelines between organisms
Consider factors which may contribute to the extinction of a species Evaluate different theories of mass extinction	Extinctions occur when there are no remaining individuals of a species still alive Extinctions may occur when selection pressures are too great Extinctions may occur due to changing environments/human interactions/diseases and new competition factors There are theories for mass extinction, which are difficult to prove	Consider how evolution and extinction co-exist Decipher evidence as to extinction rates or reasons for being placed on endangered lists Evaluate data and research for mass extinctions and analyse supporting evidence for these theories to make reasoned judgements about their validity
Consider how bacterial resistance is an example of natural selection Evaluate how and why this presents a concern to medicine	Antibiotics can only be used for bacterial infections Bacteria reproduce by binary fission, which is much faster than mitosis Bacterial DNA can mutate and cause changes in the base sequence of DNA which can alter the resulting phenotype As a result of phenotypic change, bacteria can become resistant to antibiotics There are 2 factors which increase the likelihood of bacterial resistance: Over-use/over prescription (which includes use in agriculture) and not completing a course of antibiotics	Analyse data on the number of resistant strains of bacteria to draw conclusions as to how trends over time Consider and recall how inhibition zones can be an effective measure of the efficiency of antibiotics Explain why hospital hygiene is so important Explain why antibiotics should be used carefully Consider the emergence of synthetic antibiotics and why these are being developed

Describe and define Carl Linnaeus'	Organisms are classified into a hierarchical organisation by;	Identify how new species are identified and the systems that
classification hierarchy	Kingdom – Phylum – Class -Order – Family – Genus – species	are deployed to investigate them Give identifying characteristics
Explain why classification	There are 6 kingdoms and 3 domains: Animals – Plants – Fungi – Protista –	of the different types
systems are useful	Prokaryotes – Archaebacteria	Explain why Latin is the universal language of science
	All organisms have a binomial name – A Genus (stated with a capital letter) and a species (which is all lower case)	and why the binomial system is used around the world
Consider why	Organisms are either eukaryotic (have membrane	Understand how scientific
biochemical processes and enhanced	bound organelles) or are prokaryotic (have no membrane bound organelles)	developments can enhance existing scientific work
microscopy led to an update of the classification system	Archaebacteria are now included as a domain – These are sometimes known as extremophiles. They are primitive bacteria that exist in remote	You can read and interpret an evolutionary tree to identify a common ancestor
,	environments	
Explain how Carl		
Woese's system has	All organisms are classified on their morphology	
enhanced classification of	and their internal cellular structures, as well as DNA lineage	
organisms		
	Evolutionary trees can display evolutionary	
	relationships between organisms	