BIOLOGY	Students will know and remember	So that they can
Organising Plants		
Identify the tissues in a leaf	Leaves are adapted to maximise	Label a diagram of a cross section through
and relate their structure	photosynthesis	a leaf from observations using a
to their function in		microscope.
photosynthesis		How to create biological drawings.
Describe the role of	Stomatal opening can be controlled by	Make imprints of a leaf and observe under
stomata and guard cells in	plant.	a microscope.
controlling water loss and	More stomata on the shadier underside	Draw the arrangement of guard cells and
gas exchange	of the leaf to avoid water loss.	stomata.
		How to calculate stomatal density.
Describe how xylem,	The roots, stem and leaves of a plant	Observation and drawing of tissues from
phloem and roots are	form a transport system.	slides.
adapted to their functions	Phloem transports sugars	
	(translocation).	
Explain how water is	Xylem tissues are hollow and transport	Observation of celery.
transported through the	water and dissolved substances.	Forming hypothesis on observing the
plant (transpiration)		behaviour of water drops on a penny.
Explain how water is	Water is lost through stomata by	Forming hypothesis on observing a plant in
transported through the	evaporation (transpiration).	a clear plastic bag.
plant (transpiration)		
Explain how the rate of	Transpiration is affected by different	How to use a potometer
transport through a plant	factors.	Calculate rates.
can be measured.		Evaluate data from a potometer.
Describe why plants have	Plants need to balance out the need for	Analyse data from cactus
to control water loss	carbon dioxide for photosynthesis with	
	water loss from stomata.	

BIOLOGY	Students will know and remember	So that they can
Communicable Disease		
What is health and how is	There are different types and causes of ill	Analyse health data
it affected?	health.	
	Many health problems interact with each	
	other.	
Describe the four types of	Pathogens cause infectious disease in both	
pathogen and how they	animals and plants.	
multiply		
Explain how pathogens	Pathogens can be spread by direct contact,	
spread	by water, by air or by animals (vectors).	
Describe how the spread	That spread can be reduced by simple	History of antiseptics.
of disease can be	hygiene, destroying vectors, isolation and	
prevented.	vaccination.	
GCSE BIOLOGY ONLY Required Practical 2:	GCSE BIOLOGY ONLY Use agar plates to establish a safe method	GCSE BIOLOGY ONLY
Investigate the effect of	using aseptic techniques.	How to use aseptic techniques.
antiseptics or antibiotics	Uncontaminated cultures of microorganisms	Evaluate risks
on bacterial growth	are required for	Present and analyse the results.
using agar plates and	investigating the action of disinfectants and	Calculate cross-sectional areas of
measuring zones of	antibiotics.	colonies or
inhibition.	Bacteria can be grown in a nutrient broth	clear areas around colonies using πr^2 .
	solution or as colonies on an	
	agar gel plate.	
Describe the effects of	Bacteria multiply by simple cell division	Calculate the number of bacteria in a
antiseptics or antibiotics	(binary fission) as often as	population after a certain time in
on bacterial growth	once every 20 minutes if they have enough	standard form
	nutrients and a suitable	
	temperature.	
Describe the symptoms	Viral diseases include tobacco mosaic virus,	
and control of viral and	measles and AIDS, which is caused by HIV.	
bacterial diseases in	Viruses cannot be killed by antibiotics.	
plants and animals.	Bacterial diseases include salmonella and	
	gonorrhoea.	
Describe the symptoms	Fungal diseases include rose black spot and	
and control of fungal and	athlete's foot.	
protist diseases in plants and animals.	Protist diseases include malaria.	
Describe the body's first	Bacteria produce toxins which cause cell	
line of defence and how	damage.	
pathogens make us feel	Viruses reproduce inside of cells.	
ill.		
Explain how the immune	White blood cells help to defend against	Use models to represent how white
system defends against	pathogens.	blood cells work.
disease.		
Explain how the immune	Antibodies are specific for one type of	Use models to represent how white
system defends against	antigen.	blood cells work.
disease.	There are different types of immunity.	
Describe the symptoms	Plants can be infected by a range of	
and detection of diseases	pathogens as well as insect pests.	
in plants.	Plants can be damaged by a range of ion	
	deficiency conditions.	

GCSE BIOLOGY ONLY	GCSE BIOLOGY ONLY	
Describe the variety of mechanisms that plants have evolved to defend themselves.	Plants have physical, chemical and mechanical adaptations to defend themselves against disease.	

BIOLOGY	Students will know and remember	So that they can
Treating & Preventing		
Disease	A vascing stimulates white blood calls to	Use models to evaluin herry vessingtion
Explain how vaccines prevent disease.	A vaccine stimulates white blood cells to produce antibodies.	Use models to explain how vaccination works.
prevent disease.	The need for herd immunity.	How Edward Jenner discovered
	The need for nera initiality.	vaccines.
Explain how vaccines	The secondary response to an infection is far	Evaluate risks related to vaccination.
prevent disease.	greater and quicker than the primary	
	response.	
	Immunity can be passive or active.	
State which drugs come	Traditionally drugs were extracted from	Developments in pharmacology
from plants and microorganisms.	plants and microorganisms.	
microorganisms.	Most new drugs are synthesised by	
	chemists; the starting point may still be a	
	chemical extracted from a plant.	
Describe the impact of	Specific antibiotics are used to kill specific	How Alexander Fleming discovered
antibiotics.	bacteria.	penicillin and the work of Florey and
		Chain.
Describe the problems	The emergence of resistance is of great	Analyse results of mast rings.
associated with antibiotic	concern.	
resistance.		
Explain the difficulty in	Antibiotics cannot kill viral pathogens.	How to interpret data about painkillers
developing drugs that kill	Painkillers treat symptoms but do not kill	and other medicines.
viruses without damaging	pathogens.	Understand how scientific methods and
body tissues.		applications develop over time.
		Evaluate personal, social and economic
		implications of drugs.
Explain the main steps in	New drugs are tested for toxicity, efficacy	Evaluate methods used in the
the development and	and dose.	development of drugs.
testing of a new drug.		
Explain what a double- blind trial is.	Placebos and double-blind trials remove bias from a trial.	How to set up a double-blind trial.
GCSE BIOLOGY ONLY	GCSE BIOLOGY ONLY	GCSE BIOLOGY ONLY
Describe the uses of	MABs are produced from a single clone of	How to use a model to describe how
monoclonal antibodies	cells. They are specific to one antigen, so	MABs are produced.
(MABs) and explain how	target a specific chemical or cell in the body.	
these work.		
GCSE BIOLOGY ONLY	GCSE BIOLOGY ONLY	GCSE BIOLOGY ONLY
Explain why MABs are not	There are many uses for MABs.	Evaluate the advantages and
yet widely used in the		disadvantages of MABs.
body.	MABs can have serious side effects.	Appreciate the power and limitations of
		science by explaining technological applications of science and evaluate
		risks in relation to MABs.

BIOLOGY Photosynthesis	Students will know and remember	So that they can
State the symbol equation for photosynthesis. Explain how a leaf is adapted for photosynthesis.	Photosynthesis is an endothermic reaction. Photosynthesis equation. Photosynthesis is important to the survival of other organisms.	How to obtain evidence for use of light, use of chlorophyll and use of carbon dioxide Predict results. How theories have changed over time.
Explain the different stages in testing a leaf for starch	Plants convert sugars to starch for storage. Oxygen relights a glowing spill.	How to test a leaf for starch. How to show oxygen is released in photosynthesis
Describe the effect of limiting factors on photosynthesis.	The rate of photosynthesis may be limited by the shortage of carbon dioxide, light intensity, chlorophyll or low temperature.	Analyse data on limiting factor experiments.
RP5 Rate of Photosynthesis	The rate of photosynthesis may be limited by the shortage of carbon dioxide, light intensity, chlorophyll or low temperature.	Hypothesis, method, CIDERR Risk assessment Data analysis Evaluation
Describe how a plant uses glucose.	 Glucose produced in photosynthesis may be: used for respiration converted into starch for storage used to produce fats and oils for storage or cellulose to strengthen cell walls used to produce amino acids for protein synthesis. 	
Describe how humans can manipulate the environment in which plants grow	The rate of photosynthesis may be limited by the shortage of carbon dioxide, light intensity, chlorophyll or low temperature.	Analyse data to relate limiting factors to the cost effectiveness of adding heat, light or carbon dioxide to greenhouses.

BIOLOGY Respiration	Students will know and remember	So that they can
State the symbol equation for aerobic respiration.	Aerobic respiration is an exothermic reaction. Aerobic respiration equation.	How to obtain evidence for use of glucose and oxygen, and release of water, carbon dioxide and heat energy.
State the symbol equation for aerobic respiration. Explain why organisms need energy transfers.	Aerobic respiration happens in the mitochondria. Energy transfers required for chemical reactions, movement and keeping warm.	
Describe how the body responds to an increased demand for energy during exercise. State the word equation for anaerobic respiration in mammals.	The heart rate, breathing rate and breath volume increase during exercise to supply the muscles with more oxygenated blood. Anaerobic respiration equation. Anaerobic respiration takes place in muscles, creating lactic acid, muscle fatigue and an oxygen debt.	How to measure pulse rate before and after exercise. Calculating a mean rate.
State the word equation for anaerobic respiration in yeast and its use in industry.	Less energy transfer. Anaerobic respiration equation. Release carbon dioxide and ethanol. Less energy transfer.	How to determine rate of respiration in yeast.
Identify different metabolic reactions that occur in organisms.	Metabolism is the sum of all the reactions in a cell or the body. Blood flowing through the muscles transports the lactic acid to the liver where it is converted back into glucose.	

BIOLOGY	Students will know and remember	So that they can
Adaptations,		
Interdependence & Competition		
Explain what is meant by a stable community.	One species depends on others for food, shelter, pollination, seed dispersal etc. This is called interdependence.	How to observe organisms in their habitats and suggest inter- relationships.
	Organisms need a supply of materials from their surroundings and other organisms to survive and reproduce.	
Name biotic and abiotic factors in a habitat and	Biotic factors are living factors that can affect a community.	How to model changes in an environment.
explain how a change in one of these factors might affect a community	Abiotic factors are non-living factors which can affect a community.	
Required Practical 7 Describe how to carry out random sampling of organisms using a quadrat.	Quantitative data on the distribution and abundance of organisms can be obtained by random sampling with quadrats	Evaluate data gathered by using a quadrat. Calculate area, mean, median, mode and range.
- <u>2</u>		Evaluate method to estimate cover and modify to estimate a plant population on the school field.
Required Practical 7	Quantitative data on the distribution and	Evaluate data gathered by using a
Describe when and how a transect should be used.	abundance of organisms can be obtained by sampling along a transect.	line transect. Calculate area, mean, median, mode and range.
Describe resources that animals compete for in a given habitat.	Animals compete for food, mates and territory.	
Describe resources that plants compete for in a given habitat.	Plants compete for light, space, water and mineral ions.	
Describe and explain how structural, behavioural and	Organisms have adaptations for survival, they may be structural, behavioural or functional.	Develop explanations for adaptations.
functional adaptations, in a range of organisms, help them to survive in their habitat.	Extremophiles can survive in very extreme environments, such as high temperature or pressure, or in high salt concentration.	
Define the term extremophile and give general examples.		
Describe and explain how structural, behavioural and functional adaptations in animals help them to survive in their habitat.	Animals have adaptations for survival, they may be structural, behavioural or functional.	Develop explanations for adaptations.

Describe and explain how	Plants have adaptations for survival, they may	Develop explanations for
structural, behavioural and	be structural, behavioural or functional.	adaptations.
functional adaptations in		
plants help them to survive		
in their habitat.		

BIOLOGY Organising and Ecosystem	Students will know and remember	So that they can
Explain what a food chain shows. Explain that photosynthetic organisms are the producers of biomass for life on Earth.	Feeding relationships can be represented by food chains.	How to use a model to describe food chains.
Interpret and explain population curves, eg hare and lynx, red and grey squirrels, and bacterial growth.	In a stable community the numbers of predators and prey rise and fall in cycles.	How to interpret population curves and explain predator – prey relationships. Evidence from Hudson Bay Company records.
Explain the role of microorganisms in cycling materials through an ecosystem.	The decay cycle returns carbon to the atmosphere as carbon dioxide and mineral ions to the soil.	
Required Practical 10 Investigate the effect of temperature on the rate of decay of fresh milk by measuring pH change.	Temperature, water and availability of oxygen affect the rate of decay of biological material.	CIDERR
Required Practical 10 Investigate the effect of temperature on the rate of decay of fresh milk by measuring pH change.	Temperature, water and availability of oxygen affect the rate of decay of biological material.	Calculate rate changes in the decay of biological material Translate information between numerical and graphical form Plot and draw appropriate graphs selecting appropriate scales for the axes.
Explain the water cycle.	Materials are recycled to provide the building blocks for future organisms.	Evaluate models of the water cycle.
Explain the carbon cycle.	Materials are recycled to provide the building blocks for future organisms.	Evaluate models of the carbon cycle.