CHEMISTRY	Students will Know and Remember	So that they can
Energy Changes		
Define exothermic and	Exothermic reactions release	How to accurately measure temperature
endothermic reactions	energy in the form of heat	changes
	Endothermic reactions take in	How to correctly read a thermometer
	energy from their surroundings	
Identify whether a	Identify whether a reaction is	How to accurately measure temperature
reaction is exothermic or	exothermic or endothermic from	changes
endothermic (RP4)	temperature change data	How to correctly read a thermometer
State a use of an	Exothermic reactions are used in	How to accurately measure temperature
exothermic reaction and	applications where heating is	changes
an endothermic reaction.	required. Endothermic reactions	How to correctly read a thermometer
	can be used when cooling is	
	required.	
Define activation energy.	Energy levels of reactants and	Draw reaction profiles including correctly
Sketch a generic reaction	products in	labelled axes.
profile diagram for an	exothermic/endothermic reactions	Identify the activation energy and
exothermic or	Reactions have an activation	enthalpy change on a reaction profile.
endothermic reaction.	energy	
	An energy change takes place	
	during reactions	
Calculate	Breaking bonds is an endothermic	Bond energy calculations
energy/enthalpy changes	process Making bands is an avathormic	Second law of thermodynamics – Energy
using bond energy values	Making bonds is an exothermic process	cannot be created or destroyed, only transferred.
	We can calculate energy changes	Heat energy is lost to the environment,
	quantitatively using bond enthalpy	warming the surroundings.
	values	
SEPARATE CHEMISTRY	Batteries are comprised of a	Building a simple cell using two different
ONLY	collection of cells	metals and a metal salt solution
Describe a simple cell.	Alkaline batteries and zinc-carbon	Using a voltmeter to measure potential
Describe a battery	batteries are non-rechargeable.	difference
Give an example of a	Lithium batteries are rechargeable.	How to produce a series circuit
non-rechargeable battery		
SEPARATE CHEMISTRY	Hydrogen fuel cells have several	Hydrogen fuel cells are being developed
ONLY Describes a business of fact	advantages over Internal	which could potentially be a viable
Describe a hydrogen fuel	Combustion Engines.	alternative to Petrol/Diesel or electric
cell. State some uses for	Fuel cells are particularly useful in	cars.
hydrogen fuel cells.	space due to their properties and waste products.	Barriers to adoption of hydrogen as a fuel including safety and distribution.
State that hydrogen fuel cells could be an	waste products.	ווכועטווא זמובנץ מוע טוגנווטענוטוו.
alternative to		
rechargeable cells and		
batteries		
Butteries		

CHEMISTRY Chemical Calculations	Students will know and remember	So that they can
Define the conservation of	,	Identify the number and type of each
mass	chemical reactions e.g. the total	atom in a chemical formulae

Interpret chemical	mass of the products must equal	
Interpret chemical formulae	mass of the products must equal the total mass of the reactants	
Demonstrate the	Mass is always conserved in	How to use a top pan balance to
conservation of mass	chemical reactions e.g. the total	accurately measure mass
Explain why mass may not	mass of the products must equal	Heating to constant mass to accurately
	the total mass of the reactants.	-
appear to be conserved		measure mass change
	Reactions which produce a gas	
	may appear to lose mass, but the	
	total mass remains the same	Calculate the relative formula mass of
Identify the relative atomic	The relative atomic mass	
mass of elements	represents the number of protons	compounds including those with brackets
Calculate relative formula	and neutrons in the nucleus of an	How the concept of RAM was developed
mass for compounds	atom	including the use of Hydrogen, Oxygen
	The relative formula mass of a	and now Carbon as a comparison
	compound is the sum of the relative atomic masses	
Calculate the number of	Calculate the number of moles	Mole calculations and the use of formula
moles in a known mass of	given Mass and Mr.	
chemicals	Know the value of Avogadro's	triangles to support rearranging equations with three terms
chemicals	-	equations with three terms
Calculate the mass of	constant and what it represents Calculate the mass of product	How to carry out reacting mass
product that will be	expected using the balanced	calculations
produced in a chemical	chemical equation and the masses	Calculations
reaction	of the reactants	
Explain why chemical	Limiting reactants determine the	Balancing chemical equations
equations must be	amount of products that can be	Chemical equations must be balanced
balanced.	produced	due to the conservation of mass
Identify the limiting	Reactions stop when the limiting	due to the conservation of mass
reactant in a chemical	reactant runs out	
reaction.		
State the definition of	Calculate the theoretical yield of a	Percentage yield is used in industry to
theoretical yield, actual	reaction	determine the efficiency of a chemical
yield, and percentage	Calculate the percentage yield of	process
yield.	a reaction using actual and	High percentage yields mean less
Calculate percentage	theoretical yields	valuable resources and reactants are
yields		wasted
State a definition of atom	Calculate the atom economy of a	Atom economy is important to "green
economy	reaction	chemistry" and the desire to reduce
		sometimes harmful waste products in
		industry.
Explain how concentration	Calculate the concentration of a	Increasing the volume of a solution by X
of a solution can be	solution in g/dm3 and mol/dm3	decreases the concentration by X
changed.	Calculate concentrations of	How to carry out a dilution of a solution
Calculate the mass of	diluted solutions	to give a known concentration
solute (in g) in a solution		
when given the		
concentration in g/dm3		
and volume in dm3 or		
cm3.	Titrations are used to identify the	Independent the tituin strip resthered and the
SEPARATE CHEMISTRY	Titrations are used to identify the	Understand the titrimetric method and its
ONLY	concentration of a solution via	uses in identifying the concentration of
Calculate a titra	neutralisation.	an unknown solution. Titrations are often
Calculate a titre. Describe how an indicator	Indicators are used to identify the	used in toxicology and forensic science.
can be used to determine	end point of a reaction.	
the end point.		

Explain how accuracy can		
be improved in a titration.		
SEPARATE CHEMISTRY	How to carry out a titration	Understand the titration
ONLY	accurately	procedure/method and its applications.
		Explain how to accurately record the end
Accurately read the		point of a titration.
volume on a burette to 1		Recording concordant results
decimal place.		
Identify concordant results		
SEPARATE CHEMISTRY	Calculate the concentration of a	Titrimetric method
ONLY	solution in mol/dm3 when given	Difference between accuracy and
	the amount of solute in moles and	precision
Calculate the	volume of solution in dm3.	Repeatability and concordant results
concentration of a solution		
using a titration		
Calculate the amount of		
acid or alkali needed in a		
neutralisation reaction.		
SEPARATE CHEMISTRY	Calculate the volume of an ideal	Ideal gas calculations
ONLY	gas given the number of moles	Converting from cm3 to dm3 and m3
Calculate the amount in		
moles of gas in a given		
volume at room		
temperature and pressure.		

CHEMISTRY Rates & Equilibrium	Students will know and remember	So that they can
Define rate of reaction Calculate the mean rate of a reaction	Rates of reaction can be given in a variety of units depending on the variable being measured. Calculate the mean rate of reaction using change in variable over time	Using gas syringes and measuring cylinders to measure the volume of gas produced Use a top pan balance to accurately record the mass change
Plot a graph that allows the calculation of the rate at a specific time	How to accurately plot a scatter graph using data Use the gradient of the tangent to a curve to calculate the rate of reaction at a given time	Calculating the gradient of a tangent Plotting a scatter graph Drawing a correct line of best fit Identifying anomalies
Use collision theory to explain how changing conditions affects the rate of reaction	Reaction rate is determined by the number of successful collisions per second Four main factors can influence the frequency of successful collisions	How to use particle diagrams to explain the impact of changing condition on the rate of reaction Particle model – Solids, liquids and gases
Explain how temperature affects the rate of a reaction using collision theory	Increasing temperature means particles have more energy, are moving faster and therefore there is an increased frequency of successful collisions	Using a thermometer to accurately record starting temperatures. How to design a method to investigate the effect of temperature on reaction rate.
Explain how concentration and pressure affect the rate of a reaction using collision theory	Increasing concentration means there are more particles in the same volume. Increasing pressure means the same number of particles in a smaller volume. Both of which increase the frequency of successful collisions.	How to design a method to investigate the effect of concentration and pressure on reaction rate. Correct use of gas syringes and measuring cylinders.

Explain how catalysts speed up a reaction Explain the effect of increased surface area using collision theory	Catalysts provide an alternative reaction pathway with a lower activation energy. Increased surface area results in more particles being exposed to collisions.	Use of catalysts in industry to reduce production costs by speeding up reactions. Advantages of using a catalyst over increasing other factors. Examples of catalysts in industry and why catalysts often have a large surface area.
Explain how reactions can be reversible Identify reversible reactions from the chemical equation	Chemical reactions can be reversible. Reversible reactions are identified using the ≒ symbol Understand that reversible physical changes such as melting are not reversible chemical reactions	Produce balanced symbol equations using the ⇔ symbol
Explain why the energy change in a reversible reaction is exothermic in one direction and endothermic in the reverse direction Make predictive observations of familiar reversible reactions when information is supplied.	Identify which direction of a reversible reaction is exothermic and which is endothermic using the sign of the overall enthalpy change as written.	Write balanced equations for reversible reactions using the ≒ symbol
SEPARATE CHEMISTRY ONLY Describe the conditions needed to achieve dynamic equilibrium Describe how the rate of the forward and reverse reactions compare at equilibrium Define Le Chatelier's Principle	Dynamic equilibria can only occur in a closed system. Equilibrium is reached when the rate of the forward and reverse reactions are equal. The concentrations of reactants an products are not changing at equilibrium.	Le Chatelier was a French Scientist who produced the Principle named after him which states that a system at equilibrium will shift to oppose any applied change.
SEPARATE CHEMISTRY ONLY Explain how changing the conditions for a system at equilibrium affects the position of the equilibria Predict the effect on yield of changing the conditions of a reaction at equilibrium	The position of an equilibrium will shift to reduce the effect of any imposed change. By changing the conditions of an equilibrium we can shift the position of equilibrium to favour one direction and increase the yield of the desired product.	The Haber-Bosch process is one of the most valuable commercial equilibria reactions. It was invented by Fritz Haber and the fertiliser it produces has enabled us as a society to produce enough food to sustain a much higher population.

CHEMISTRY	Students will know and remember	So that they can
Crude Oil & Fuels		
Explain the properties	Define the term hydrocarbon	
of hydrocarbons	Describe how hydrocarbons are formed	
	Explain why hydrocarbons are a finite resource	
	Name and draw the common alkanes and alkenes	
	Identify the properties of the different hydrocarbons	
	Explain how the properties of hydrocarbons are affected by the length of the hydrocarbons	
Explain how Crude oil	Define the term fraction	
is processed	Describe the process of fractional distillation	
	Explain how the fractions of crude oil are used	
	Evaluate the availability of each fraction against the demand for that fraction	
	Define the term cracking	
	Describe methods used to crack hydrocarbons	
	Identify the products of the cracking process	
	Define the term alkene	
	Draw and name alkenes containing up to 5 carbon atoms	
	Describe the test for saturation	
	Name the reactions that alkenes undergo	

Describe combustion reactions involving hydrocarbons	Define the terms combustion and incomplete combustion	Evaluate a calorimetry reaction Create equations for complete and
Tiyurocarbolis	Identify the products of the combustion and incomplete combustion reactions	incomplete combustion reactions
	Explain why combustion reactions are exothermic	
	Describe the chemical tests for water and carbon dioxide	
	Describe how to determine the energy released in a reaction	
	Explain why incomplete combustion reactions can be dangerous.	